Friction and Damage Evolution of the Borided CoCrMo Alloy

In this study, friction and evolution of cohesive failures (cracks and spallations) in CoB/Co2B layers were analyzed. Thermochemical treatment was carried out at 950, 975, and 1000 °C during 6, 8, and 10 h of exposure time, respectively. The characterization techniques include scanning electron microscopy (SEM) for morphology inspection of layers and thickness measurement, X-ray diffraction for the investigation of phases formed, and instrumented indention to obtain hardness, Young’s modulus, and residual stresses. The practical adhesion of the boride layers was evaluated by a progressive load scratch test (PLST), and the critical loads of cracking, chipping, and spallation were calculated. Later, unidirectional multipass scratch tests (MPSTs) were performed by applying subcritical loads selected from the lower spallation load (54 N); these tests were conducted for a different number of scratch passes. The results show that the coefficient of friction (COF) and coating damage depend

Leave a Reply

Your email address will not be published. Required fields are marked *